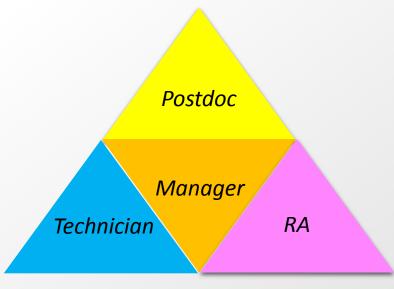
Management of a Mouse Colony



Keith Leung

Infrastructure

Generation and manipulation of transgenic, chimeric mice, cryopreservation

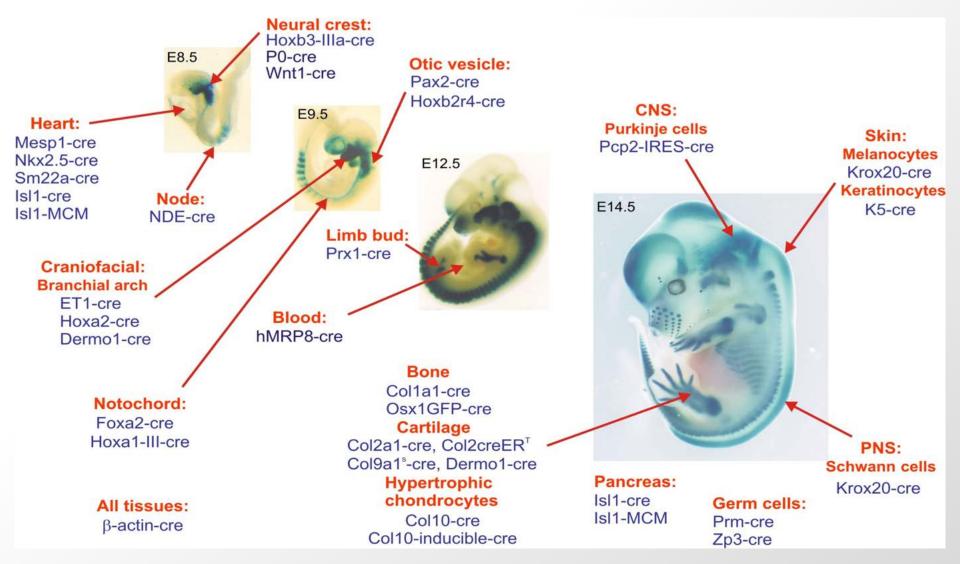
Gene Targeting

Maintenance of the mouse colony



Facility

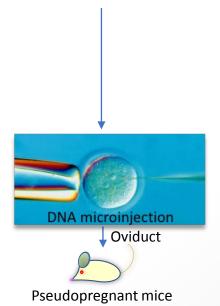
Capacity



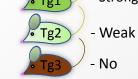
Rich Mouse Resources

								,
Life-Act RFP	Confetti 4- color	Sox9 3'EGFP	H2B GFP	4-Oct GFP	TetO-H2B-GFP	R26 tdTomato	Rosa26 YFP	GBS-GFP
Noto GFP	GFP	R26 EGFP DTA	Z/EG	Sox9 CreERT2	Col10 BacCre	New Col10Cre	Osx:Cre	Lgr5 KI Cre
β-actin Cre (C57)	β-actin Cre (FVB)	R26 Cre ERT2	Sm22α Cre	Pax2 Cre	Wnt1 Cre	Prm Cre	Nde Cre	Prx1 Cre
Zp3 Cre (FVB)	Zp3 Cre (129 svj)	K5 Cre	Hoxb2 (r4) Cre	Col2a1 Cre	Col2Cre ERTM2	Ihh E95k (neoless)	Smo Flox	MT1-MMP Flox
Cdc42 flox	Gata3 Flox	Dicer flox	Smad1/5 flox	Smad4 flox	Furin flox	Sox2 flox	Sox10 flox	Prkci flox
β-cat ex3 flox	β-cat flox	Ptc flox	Hsp47 flox	Bmp2 flox	Ihh flox	Krox 20 flox	β1-Integ flox	Fn flox
Kif5b flox	Kindlin2 Flox	llk flox	Mgp KO	Col10a1 KO	Oasis	IIA 33 neoless	IIAICR	Smad 4 KO
IIA Neo 125	Bmpr1a KO	IIA Hnrnpa1	IIAKOCT	IIA129	Ppr null	Fgf21 KO	CV2 KO	lhh KO
Rosa26 LacZ	Ptc LacZ	Axin2 LacZ	Topgal	61F08LacZ	Sm22α LacZ	Col2a1 LacZ	Nodal LacZ	Msx2 LacZ
80.3	Flp	Sm22α-Col10	TetONmyc	rtTA	rtTA*M2	rtTA (neo in)	Col1a1 TetO OSKM	Col1a1 TetO OSKM; TetO-H2B-GFP
MgpKO; Sm mgp	rtTA*M2; Col1a1 TetO OSKM	IIAKOCT; Hnrnpa1	Hoxb2> Sox2 fl	FLP> Smo Flox	R26tdTom> β- actin Cre	129svev wt	C57 wt	СЗН

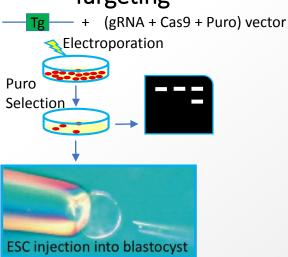
Cre Mouse Resources



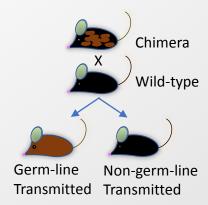
Mouse Mutants for the Manipulation of Signaling Pathways


Signaling pathways	Conditional Mutants	Other Mutants
Wnt	β-catenin Flox	Wnt1 cre, Topgal
ВМР	Bmp1ar Flox, Smad1 Flox,	Bmp1ar KO, Smad4 KO, BRE-
	Smad4 Flox, Smad5 Flox	LacZ, CV2 KO
НН	Ppr flox, Smo flox, Ihh Flox	Smo-Rosa26, Ihh KO, Ptc-lacZ
Fgf	Fgfr1 Flox	NIL
Nodal	NIL	Nodal-LacZ, NDE cre

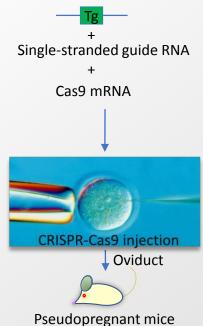
Random Integration of Transgene


Expression - Strong

Non-transgenic Transgenic pups pups


- Expression level and pattern are affected by the integrated sites and copy number

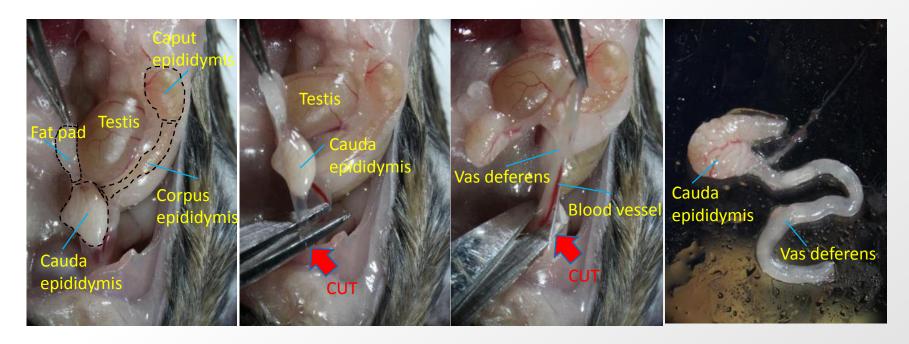
Gene Targeting


Uterus

Pseudopregnant mice

Transgenic Core Team HKU

CRISPR-Cas9-mediated **Gene Targeting**



Non-transgenic pups

Transgene is knocked into the same targeted site with same expression level and

pattern

Harvesting Cauda Epididymides for Transport in Lifor medium at 4°C

- Sperm is viable for 5 days.
- Ready for in vitro fertilization.
- Cheap: about HK\$ 3,000 for transport (send out a Thermos flask with Lifor and return with cauda epididymides).
- Several strains can be sent together.
- Less paper work.
- Less technique demanding.

XYClone

- Laser-assisted injection of ES cells into morula
 - ☐ Enhances germline transmission
- Inner Cell Mass Isolation ES cell derivation
- Intracytoplasmic Sperm Injection
- Laser-assisted IVF
- Somatic Cell Nuclear Transfer

Maintenance of Mouse Colony

- Keep the colony young less than 9 months old because their reproductive power declines with age.
- Keep the colony size to minimal to reduce running cost.
 - ☐ At least 4 cages to keep a mouse strain
 - □ \$2,500 yearly cost to maintain them on shelf
- We had 4200 cages of mice in 2014, holding and husbandry cost was 2.5 million per year.
- Good genotyping protocol.
- Good database system: we use Google Spreadsheet can be accessed anywhere and free of charge.
- Don't keep many males together because only one of them is fertile and the others are sterile.
- Functional test of the transgenic mutants as their expression may change when the expressing copy is segregated.

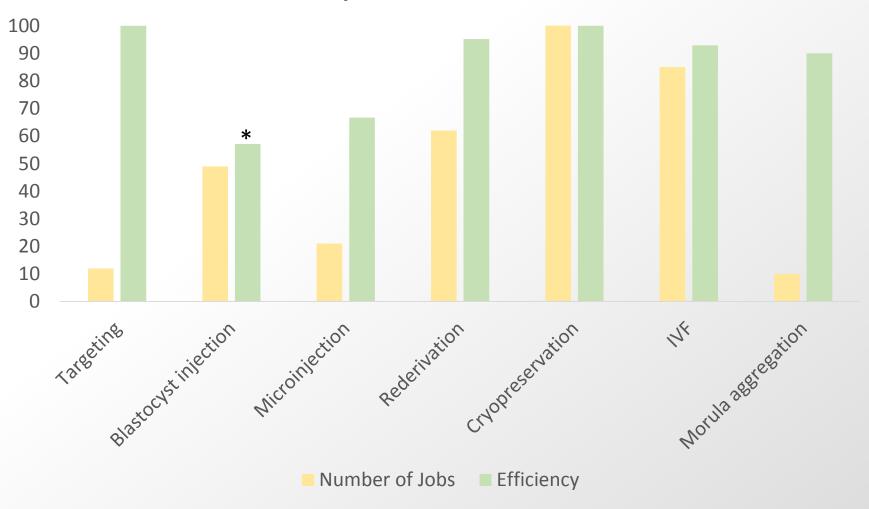
Cryopreservation

- Save space and animal care resources.
- □ \$12,000 cost to make a transgenic mouse strain
- □ \$120,000 cost to make a gene targeting mouse strain
- ☐ 6-12 months to develop a transgenic mouse strain
- As a backup in case of any catastrophic effects like MHV outbreaks and genetic drift – minimize impact to research by quick cryo-recovery.
- Cryopreserve embryos and sperm.
- Efficiency is increased by IVF: 2 males + 15 females can be used to produce 300-500 2-cell embryos.
- Sperm cryo is cheap and fast. It can be done with two stud breeders.

In vitro Fertilization (IVF)

- is a process by which an egg is fertilized by sperm outside the body.
- to rapidly expand mouse lines from a male that carry the desired genotype.
- to maintain or rescue strains with poor breeding efficiency.
- to produce age-matched mice or fetuses.
- cryopreservation at the two-cell stage (speed cryo).
- to produce two-cell embryos which are then cultured to morulae for aggregation.

Output: 1999 to present


- generated 90 vectors for gene targeting and transgenic mice.
- generated 71 knockout / knock-in mice; 32 transgenic mouse lines.
- imported, rederived and established over 100 lines of transgenic/mutant mouse lines.
- 200 mouse lines were cryopreserved.
- provided training in the form of hands-on training to many students and investigators.
- supported in transgenic/knockout aspects for 50 RGCfunded projects, 3 RGC Group Research projects, the AoE programme, the AOSpine programme and the Themebased Research Scheme.

TCT Has Been Providing Services for Many Researchers from the Faculty of Medicine of HKU and Other Institutes

	Principal investigators	Department /School		
AoE	K Cheah, D Chan, KM Yao, MH Sham, JD Huang, Z Zhou	Biochem		
	K Cheung	Orthopaedics and Traumacology		
TRS	K Cheah, D Chan, KM Yao, JD Huang	Biochem /SBMS		
	K Cheung	Orthopaedics and Traumacology		
	QZ Lian	Medicine		
Others	D Chan, M Cheung, MH Sham, JD Huang	Biochem /SBMS		
	ZJ Zhou, B Gao, DY Jin	Biochem /SBMS		
	S Chung	Anatomy /SBMS		
	HF Tse, SL Ho, MY Mok, YL Lau	Medicine		
	SY Yung, E Tse	Medicine		
	CH Lui and P Tam	Surgery		
	M Peiris and HL Yen	School of Public Health		
	SY Leung	Pathology		
	Y Wang	Pharmacology and Pharmacy		
	SY Chan	Paediatrics and Adolescent Medicine		
	KY Yuen	Microbiology		
	V Leung	Orthopaedics and Traumacology		
	KM Kwan	СИНК		
	Peng Li	Guangzhou Institute of Biomedicine and Health		

Efficiency of Jobs 2014-2017

- 57% of ES cell clones produced chimeras
- Germline transmission rate: 82%

